

Estimation of Forest Canopy Attenuation by a Time-Domain Analysis of Radar Backscatter Response

Mehmet Kurum (1), Roger H. Lang (1), Peggy E. O'Neill (2), Alicia T. Joseph (2), Thomas J. Jackson (3), Michael H. Cosh (3)

(1) The George Washington University, Electrical & Computer Engineering, Washington, DC 20052 USA, Email: kurum@gwmail.gwu.edu and lang@gwu.edu

(2) Hydrological Sciences Branch/Code 614.3, NASA GSFC, Greenbelt, MD 20771 USA, Email: Peggy.E.ONeill@nasa.gov and Alicia.T.Joseph@nasa.gov

(3) Hydrology & Remote Sensing Laboratory, USDA ARS, Beltsville, MD 20705 USA, Email: Tom.Jackson@ars.usda.gov and Michael, Cosh@usda.gov

BACKROUND TRANSIENT RESPONSE MODEL DATA PROCESSING SCHEME

- Soil moisture is recognized as an important component of the water, energy, and carbon cycles at the interface between the Earth's surface
- Advances in L band microwave science and technology have led to the upcoming SMOS (2009) and the recently approved SMAP (2013)
- The current baseline soil moisture retrieval algorithms for these missions have been developed and validated only over grasslands, agricultural crops, and generally light to moderate vegetation.
- Tree areas have generally been excluded from operational microwave soil moisture retrieval plans due to the large expected impact of trees on masking the microwave response to the underlying soil
- To improve our understanding of the microwave properties of trees such as attenuation and scattering and their effects on soil moisture retrieval algorithms for the future space-borne soil moisture missions.

6

COMBINED RADAR/RADIOMETER (ComRAD)

- The ComRAD microwave
- dual-polarized 1.4 GHz total-power radiometers
- band VNA based radar,
- sharing a single parabolic dish antenna with a novel broadband stacked patch dual

FIELD EXPERIMENT

- During radar measurements, the scan arrangement with a 60° sweep
- Location : Upper Marlboro Maryland USA
- The ground: flat and the cover under the tree canopy consists of relatively short grass.
- Soil texture : a loamy sand, consisting of 80.3% sand and 6.8%
- Volumetric Soil Moisture : (VSM) ranges from %20 to %35
- Tree height : Variable on the
- Diameters at breast height (dbh) range from 17 to 23 cm
- Basal Area: 122 m² / hectare

Radar data has been acquired at the height of 19 m over ground with incidence angles of 15°, 25°, 35°, and 45°

Configuration VSM 32.0 %

- on a Monte Carlo A coherent scattering model based simulation, is developed. Distorted Born Approximation (the single
- approximation) is assumed Individual backscatterings from each discrete scatterer are
- summed coherently Frequency domain solutions E(f) at discrete frequency points
- (201 points) are calculated. An inverse discrete Fourier transform (IDFT) on this backscattered
- An average time domain response e(t) is obtained by a sufficient number of realizations of trees through Monte Carlo.
- >This follows closely the data acquisition and signal processing technique employed by network analyzer-based radars (stepped

INDIVIDUAL SCATTERING 6 CONTRIBUTIONS

EFFECT OF SOIL MOISTURE

A NEW TECHNIQUE TO ESTIMATE **FOREST CANOPY ATTENUATION**

acquires the ability to locate the individual backscattering sources within a forest

> The tree-ground (double i teraction) and the canopy (v ume scattering) and effects appear at ifferent times in the transient solution

Measured Transient Response from Trees to L-Band Stepped-Frequency Rada The time difference between these two scattering mechanisms results from the fact that they have different path lengths.

- One can separate the radar signatures by performing a time gating operation on the measured time-domain response
- The frequency-domain responses of the separated signatures are obtained by transforming them back to the frequency-domain.
- Using these transformed returns, the frequency correlation functions (FCF) of each contribution are generated for difference frequencies in the bandpass of the radar system

- The FCF of the total response oscillates and its decorrelation bandwidth is very
- On the other hand, the distinct correlation behaviors
- tree-ground return is higher than that of canopy return.
- > This is due to the organized structure of the trunks as compared to the tree canopy
- By normalizing the FCFs of these contributions, one obtains a ratio which is independent from system characteristics such as antenna
- > The ratios R_{FCF}(n∆f) are calculated for an array of difference frequencies over the system bandpass.
- They provide a system of equations depending only on canopy thickness d_{c_1} canopy attenuation α_{c_2} a combined parameter Y_{c_2}
- involving the forest scattering coefficients and the ground reflectance. A least square method is used to solve for the a and the Y assuming the dc is known a priori.
- The do is determined from vertical projection of the time span of the first backscatter power peak.

Extrapolate IDFT Double Scattering Interaction Gating Contribution Contribution $e^{DI}(t)$ DFT DFT \rightarrow 8.6 $\alpha_a d_a / \cos \theta_a$ One Way Attenuation [dB]

RESULTS One-Way Attenuation One-Way Attenuation VV-POL

CONCLUSION & FUTURE WORK

- A new technique for determining the canopy attenuation using the measured stepped frequency radar backscatter response has been proposed [1].
- The technique has been validated and its sensitivity to physical conditions (leaf drop), polarization (HH and VV), and incidence angles (15°, 25°, 35°, and 45°) has been demonstrated.
- We are currently working on the extension of the technique for the SAR data acquired from air-borne and space-borne platforms

[1] M. Kurum, R. H. Lang, P. E. O'Neill, A. T. Joseph, T. J. Jackson. and M. H. Cosh, "Estimation of Forest Canopy Attenuation at L-band by a Time-Domain Analysis of Radar Backscatter Response", IEEE Trans. Geosci. Remote Sensing, Submitted for publication (Microrad'08 Special Issue)